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Scaling properties of cracks
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Abstract. Experiments concerning the morphology of fracture surfaces of various materials
are reviewed. The observations are interpreted within the framework of models of lines moving
in a random environment. This suggests that fracture of heterogeneous materials could be seen
as a dynamic phase transition.

Fractography has always been a useful tool for the understanding of fracture mechanisms
in complex materials. Microstructural heterogeneities—grain boundaries, second phase
precipitates, dislocation assemblies,. . .—control the ability of the material to resist crack
initiation or propagation, and can be identified on the fracture surface as more or less
easy paths for cracks. Hence, when a quantitative analysis of fracture surfaces was made
possible by technical progress in image analysis, naturally an attempt was made to correlate
the measured roughness with macroscopic mechanical properties. It was in 1984 that, for
the first time, Mandelbrotet al [1] characterized the ‘fractal’ self-affinity [2–4] of fracture
surfaces of a steel. After their pioneering work, other materials—mainly steels [5, 6]
and ceramics [7–9]—were examined, by the same experimental method. Correlations were
claimed to be established between the value of the roughness exponentζ [2, 3] (lying usually
between 0.7 and 0.9), and the fracture toughnessKIc of the material, which measures its
resistance against crack propagation. This is still a somewhat controversial topic, although
it was conjectured in 1990 [10], on the basis of experiments performed using a slightly
different experimental procedure [11] on an aluminium alloy, thatζ ' 0.8 is a universal
exponent. This conjecture has been confirmed by many experiments since then [12–19],
for all sorts of materials, both brittle and ductile, analysed using various experimental
techniques. There seems to be in each case a scaling domain—which is very much material
[20] dependent—in which this roughness exponent is observed.

At smaller length scales of observation, however—typically on the nanometre scale,
for metallic alloys, whereas the universal exponent (the above valueζ ∼ 0.8) is usually
observed in the micrometre–millimetre range—significantly smaller exponents have been
reported, first by Milmanet al [21, 22] using a scanning tunnelling microscope (STM) for
a few materials. On the other hand, McAnultyet al [23] performed two types of fracture
experiments on the same steel. Charpy tests [24]—one just throws a hammer into a notch
in the material: in this case, crack propagation should be rather brutal and quick—gave rise
to a roughness index quite close to 0.8. In contrast, low-cycle fatigue tests, which may be
thought of as a slower process, led to a smaller roughness index ('0.6).

The very existence of two regimes, the extension of which seems to depend on the
propagation speed, is reminiscent of the pinning/depinning transition [25–28] of lines mov-
ing through randomly distributed impurities [29–32], which have been extensively studied
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(c) (d)

Figure 1. Fracture surfaces of various materials. (a), (b) AFM images of the end of the
mirror zone in soda-lime float glass (courtesy of F Creuzet [18, 19]). (a) 5µm × 5 µm.
(b) 375 nm× 375 nm. Rather well defined entities can be seen on the fracture surface, the
height of which can be reliably measured as in the range of a few nanometres. However,
their apparent width (tens of nanometres) may be the consequence of artifacts if the radius of
curvature of the tip is considered (typically 20 nm). (c) A fracture surface of 7475 aluminium
alloy (a SEM micrograph). (d) A fracture surface of polycrystalline Ni3Al (a SEM micrograph).
(e) A fracture surface of granite (courtesy of J-P Hulin; photograph by C Grisot). Brittle fracture
(glass, granite, intergranular fracture of Ni3Al) leads to ‘shallower’ surfaces than ductile fracture
(aluminium alloy).

during these last few years. In fact, it has been suggested, in [33], that these models might
be relevant for describing the propagation of crack fronts in heterogeneous materials: under-
standing the morphology of the crack front at a given time allows one to infer the features of
the fracture surface, which is simply its trace left behind. Although these models still suffer
from some weaknesses as regards the description of crack fronts, most of them lead to some
interesting predictions, which can be summarized as follows. For crack velocities tending
to zero, i.e. when the force pulling the line is close to the critical force for which the crack
front is just able to free itself from the microstructural obstacles, the roughness index of the
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(e)

Figure 1. (Continued)

fracture surface is characteristic of the vicinity of this so-called ‘depinning transition’. For
non-zero crack velocities, this behaviour is recovered at small length scales, while at larger
ones, a new regime appears, characterized by a different roughness exponent. The crossover
length separating the two regimes decreases as a power law with increasing crack velocity.

Some experiments which are briefly described in the following have shown that, in fact,
the roughness index of the small-length-scales regime is indeed close to 0.5, whereas at larger
length scales, theuniversalvalue 0.8 is recovered [34–36]. This scenario is also supported
by recent molecular dynamics (MD) simulations on the fracture of amorphous materials due
to Kalia and Vashishta’s team [37–40]. These scaling properties could even be observed
over five decades of length scales thanks to the simultaneous use of a standard scanning
electron microscope (SEM) and of an atomic force microscope (AFM) [35, 36]. However,
making quantitative measurements of the average crack velocity both for the fatigue of
metals and for the stress corrosion of glass has only recently become possible. These new
results strongly support the description of crack advance in terms of line propagation in a
random environment.

This unachieved play, where some characters hope to introduce crack propagation into
the large group of dynamic critical phenomena, unfolds here. Act I describes the epopee of
the pioneers, after a very brief review of self-affine surfaces and the methods for analysing
them. Act II illustrates the struggle of the universalists, and the jeopardizing of their position
by STM experiments. Act III summarizes the predictions of the line pinning/depinning
models, as well as the results of MD simulations. Finally, Act IV describes the most recent
observations, spanning over five decades of length-scale studies in some cases, which led
to an analysis of the morphology of fracture surfaces as a function of crack velocity. Yet,
there is no epilogue to the play—only partial conclusions which ask for more work to lead
to a deeper understanding of the true nature of crack propagation in heterogeneous media.

Act I—the pioneers

Fracture surfaces may have different aspects, but usually look like mountain landscapes,
with peaks and valleys at various scales of observation (see figure 1). To the eye however,
the fracture surfaces of brittle materials such as granite or glass seem less ‘rough’ than
the fracture surface of a ductile metallic alloy (figure 1). Thus, in order to correlate the
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measured roughness with the material’s properties, it is very tempting to analyse their self-
affinity [2, 3]. This is what Mandelbrot and collaborators [1] did for the first time. Before
their experimental results are reported, the definition of self-affinity is briefly recalled, and
the main methods for measuring roughness indices are indicated.

Scene 1. The scene takes place in some strange mountains: self-affine surfaces

The notion of self-affinity was used first to characterize the Brownian fractional reliefs,
introduced by Mandelbrot and Van Ness [41, 2]. Unlike self-similar objects, self-affine
structures, being intrinsically anisotropic, are not statistically invariant through a global
dilation but rather through an affine transformation:

(x, y, z) −→ (bx, by, bζ z) (1)

wherez is the height, andx andy are the coordinates within the plane perpendicular to the
z-direction, which will be called ‘horizontal’ in the following.ζ is the so-calledroughness
index or Hurst exponent. Equation (1) implies in general that the typical heighth(r) at
point r =

√
x2+ y2 is given by

h(r) = 〈(z(r0+ r)− z(r0))2〉1/2r0
' rζ . (2)

ζ lies between the values 0 and 1, and is related to the fractal dimension (the ‘box dimension’
[2]) of the whole structure through the relation

dF = 3− ζ. (3)

ζ = 1 corresponds to a regular surface, inclined with respect to the horizontal plane: one
climbs a heighth(r) just proportional to the distancer travelled in the horizontal plane
(equation (2)). Hence, it corresponds to a fractal dimensiondF = 2. Paradoxically enough,
the smallerζ , the rougher the surface (the larger the fractal dimensiondF ); these scaling
properties are to be understood atsmall length scalesr. A self-affine surface is indeed
fractal up to distances of the order of a characteristic length called thecorrelation lengthξ ,
beyond which the object is flat, and its dimension is simply equal to 2.

One property of these structures which is of practical importance is the so-calledreturn
probability [42] P0(r), which is the probability thatz returns to its initial valuez(r = 0) = 0
after a distancer is travelled in the ‘horizontal’ plane. It can be shown that

P0(r) ∝ r−ζ . (4)

Experimentally, except in a few cases, one usually has to produce a cut of the fracture
surface. This cut may either be perpendicular to thez-axis (one then gets contour lines), or
contain it. In the latter case, one may directly computeP0 or thefirst return probabilityP1

(the probability that the height returnsfirst to its initial value after a distancer is travelled)
[42, 43], or any moment of thez-distribution on the fracture profile. One particularly
reliable quantity is

zmax(r) = 〈Max{z(r ′)}x<r ′<x+r −Min{z(r ′)}x<r ′<x+r〉x ∝ rζ . (5)

On the other hand, the intersection of the self-affine surface with a planez = 0 is a self-
similar object of dimensiondF − 1. Thus,

C(r) ∝ 1

rd−(dF−1)
= 1

r2−(2−ζ ) = r−ζ . (6)

In fact, P0(r) is the probability of finding a point of the surface within that plane,
i.e. belonging to the intersection, knowing that there was one atr = 0. In other words,
P0(r) is indeed the self-correlation functionC(r) of the intersection. This property lies at the



Scaling properties of cracks 4323

origin of all of the experimental procedures which use cuts of the surface by az = constant
plane, and it is the basis, in particular, of theslit island methodintroduced by Mandelbrot
and collaborators [1].

Scene 2. The epopee of the pioneers in the self-affine mountains

Mandelbrot, Passoja and Paullay [1] studied six samples of steel to which different heat
treatments had conferred different fracture energies, measured through Charpy tests [24]. To
analyse the resulting fracture surfaces, these were plated with vacuum-deposited nickel, and
subsequently cut and polished within az = constant plane. Images of the ‘islands’ of steel
emerging from an ‘ocean’ of nickel were analysed, and both the areaA and the perimeter
P of the islands were measured. The islands themselves are dense bidimensional objects,
but as their contours are the intersections of the fracture surface with az = constant plane,
they have a dimensiondF − 1 if the surface itself is self-affine of dimensiondF . Thus,
A ∝ l2 andP ∝ l(dF−1), wherel is the linear size of the islands considered; hence,

A ∝ P2/(dF−1). (7)

PlottingA versusP on a log–log plot should then show two linearly increasing regimes. At
length scales smaller than the correlation lengthξ , one should measure a slope 2/(2− ζ ),
and one should measure a slope 2 at larger length scales. Note that with this method of
measurement, a slight overestimation ofξ leads to an overestimation of the slope, and hence
to an underestimation ofζ .

The measured values ofζ lay between 0.70 and 0.85. The authors’ conclusion was that
ζ was increasing with decreasing fracture energy; unexpectedly, this meant that rougher
fracture surfaces corresponded to lower fracture energies.

This experimental method has been extensively used since that first experiment,
especially on steels, and on ceramics. The roughness indices, evaluated in scaling regimes
spanning over barely two decades, lie between 0.7 and 0.9. Unfortunately, it can be shown
that the precision of the measured roughness exponents is rather poor, especially when the
scaling domain is small. It is even worse if there exist two regimes, characterized by two
different exponents [36], as will be shown in the following. Nevertheless, a correlation was
claimed to exist in each case with the fracture toughness, which relates rougher surfaces to
higher fracture energies—or the other way round! These correlations were first questioned
on the basis of the results of experiments performed on a commercial aluminium alloy. With
reference [10] began the War of Secession between the correlationists and the universalists.

Act II—the battle of the universalists

Measurements comparable to those done by Mandelbrotet al [1] were performed on
a commercial aluminium alloy called 7475—using a different experimental procedure,
however. Four samples were studied, to which different solution heat treatments and
quenches conferred different fracture toughnesses.KIc was measured on CT (compact
tension) specimens (see figure 2(a)) first precracked in fatigue. The tensile fracture surfaces
(see figure 1(c)) were electrochemically nickel plated—a route which is far less directional
than vacuum evaporation—and polished surfaces corresponding to cuts byz = constant
planes were observed at various magnifications with a SEM, using backscattered electrons
which give a very good contrast between aluminium and nickel. A sketch of the
experimental procedure is shown in figure 2(b).
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Figure 2. (a) A compact tension (CT) sample, subjected to mode I crack propagation (the plane
of the crack is perpendicular to the tensile axis). (b) A sketch of the experimental procedure:
the fracture surfaces are electrochemically plated with Ni, and polished within az = constant
plane. When profiles are required, the plated samples are polished within a plane containing
the z-axis. Observations are performed with a SEM (backscattered-electron contrast) at various
magnifications.

x

y

z

v

Figure 3. A line moving along they-axis, leaving behind it a rough surface.xy is the plane of
propagation.

The self-correlation functionsC(r) of the cuts were computed for each micrograph
from the binarized image.C(r) was shown to exhibit a power-law decrease extending up
to a size3 comparable to the size of the micrograph itself. The curves relating to the
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same sample were put on the same diagram by plottingC(r) versusr/3. In these reduced
units, the scaling domain extended over two decades, corresponding to three decades on the
actual scale: 0.5 µm < r < 0.5 mm. The exponents were measured in each case, and no
systematic variation ofζ with KIc was observed:

ζ = 0.80± 0.05. (8)

It could not be concluded that there was any correlation between the roughness exponent
and the fracture toughness, and it was proposed that this exponent might beuniversal,
i.e. independent of the fracture mode, fracture toughness, and material. It was argued that
the differences in the measured ‘apparent’ exponents could be due to differences in the
correlation lengths, which are believed to depend strongly on the microstructure (see figure
1). The first battle of the War of Secession had begun.

The first reinforcements for the universalists arrived in 1992, with the experiments of
Måly and co-workers [12]. These authors studied six very different brittle materials (plaster,
Bakelite, porcelain, graphite, steel, and Al–Si) by recording the fracture profiles using an
optomechanical profilometer. By computing both the first return probabilityP1(r) (see
Act I, scene 1) and the power spectrum, they found consistent values ofζ which did not
vary much from one material to the other, and they concluded thatζ seemed indeed to be
universal:

ζ = 0.87± 0.07. (9)

This result is compatible with equation (8), and the differences may be explained by the
strong sensitivity of both the self-affine correlation lengthξ , and the lengthξc of crossover
to the small-length-scales regime (see below, Acts III and IV).

Other systems were investigated after these, giving results very similar to (8) and (9): a
viscoelastic paste made of sand and resin was studied by Lemaire and co-workers [13], mode
II branched cracks in polycrystalline Ni3Al [14] and rocks [15, 16] were investigated also,
and results on steel obtained by the electrochemical method were reported by Imreet al [17].

For some time, it seemed that the universalists would win the war. But the opposing
army found a very efficient weapon called STM. With this, they were able to analyse fracture
surfaces of metallic materials at the nanometre scale. The values that they reported were
significantly smaller than the universal exponent, lying generally between 0.4 and 0.6. It
could well be argued that non-universal behaviours could arise at such small length scales,
but this result, together with the observations of McAnulty and co-workers [23], actually
fits with the predictions of the line-moving models in the vicinity of the so-called depinning
transition.

Act III—models of lines moving in random environments: deus ex machina?

It is quite natural to imagine a fracture front as a line moving through a material containing
randomly distributed microstructural obstacles, separating the specimen into two broken
pieces as it moves along its path. The morphology of the line at each timet determines the
morphology of the final fracture surfaces, which are the surfaces of these broken pieces. It
was only suggested first in [33] that the work of Erta¸s and Kardar [30] might be applicable to
fracture. The pinning/depinning transition has been the subject of many theoretical studies in
recent years, both for propagating lines and for growing interfaces in a random environment.
Various models, both two and three dimensional, have been developed for calculating the
critical exponents characterizing fronts in a plane or surfaces in real space.
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For a line moving within a plane, a general equation can be written, in which the
velocity normal to the interface, proportional to〈∂z/∂t〉 (see figure 3), is equated to the
sum of a curvature force, a random quenched forceη(x, z) accounting for the presence of
uncorrelated random pinning obstacles, and a pulling forceF . Several cases may arise.
The pulling forceF has to reach a thresholdFc for the line to be able to move. Below
this threshold, the line is pinned by microstructural obstacles, and its morphology strongly
depends on its history. WhenF is equal toFc, the line is just able to free itself from the
pinning obstacles, but its velocity is still equal to zero. It is self-affine, and its roughness
indexζc is believed to be independent of the precise nature of the pinning forces. Similarly,
the dynamic exponentzc describing the short-time evolution of the height fluctuations:

〈(z(x, t)− z(x ′, t ′))2〉 ∝ |x − x ′|2ζcf
(

t − t ′
|x − x ′|zc

)
(10)

is also universal. One has:f (y → 0) = constant andf (y � 1) = y2ζc/zc.

t t’

v(t’-t)

h(t) h(t’)

Figure 4. The moving line at timest and t ′. One can indeed see the line moving if the
fluctuations of height are not too strong, i.e. ifv(t ′ − t) > |h(x, t ′) − h(x, t)| (equation (12)).
This is true for length scales larger thanξc ∼ v−1/(zc−ζc) (equation (18)), or at times longer than
1t ∼ (1/v)zc/(zc−ζc) (equation (14)).

Beyond the threshold, i.e. when the mean line velocityv is non-zero, one can write:
z = vt + h(x, t). In the moving frame, the random forces act as a thermal noise:
η(x, z) ' η(x, vt). In this case, for a line moving in two dimensions, Kardar, Parisi
and Zhang [44] showed that, for non-pathological noise distributions (peaked distributions),
the roughness and dynamic exponents are respectively

ζ = 1

2
z = 3

2
. (11)

We will now use an argument due to Leshhornet al [45] to give a feeling for what happens
at small length scales (or equivalently, at short times) for a non-zero value ofv. For the
movement of the line to be observable during a long time intervalt ′ − t (see figure 4), the
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fluctuations ofz have to be negligible when compared tov(t ′ − t):
v(t ′ − t) > |h(x, t ′)− h(x, t)|. (12)

Because (see equation (10))|h(x, t ′)− h(x, t)| ' (t ′ − t)ζc/zc, equation (12) requires that

ζc

zc
< 1. (13)

From equation (12), a time-scale1t = t ′−t can be defined for which the height fluctuations
are of the same order of magnitude as the mean variation ofz. In this case (equations (10)
and (12))1t1−ζc/zc ' 1/v; hence

1t ∼
(

1

v

)zc/(zc−ζc)
. (14)

To this time-scale corresponds a length scale:

ξc ∼ 1t1/zc ∼ v−1/(zc−ζc) (15)

below which the average movement of the line at a velocityv is not observable. At small
length scales, althoughv > 0, the line can thus be considered to be at threshold.

Sincev depends on the distance to the overall threshold forceFc:

v ∼ (F − Fc)β (16)

equation (15) can be written as

ξc ∼ (F − Fc)−ν (17)

with

ν = − β

zc − ζc . (18)

As expected,ξc diverges whenF is equal toFc: the whole line is then at threshold.
Ertaş and Kardar studied a local non-linear three-dimensional Langevin equation for

describing the morphology of polymers in shear flows [30] or the motion of flux lines [31].
These equations deal separately with the fluctuations of the line parallel to the line velocity
and to the pulling force (‖) and with those perpendicular to it (⊥) (see figure 5):

∂h‖
∂t
= λ‖

(
∂h‖
∂x

)2

+ λx
(
∂h‖
∂x

∂h⊥
∂x

)
+1h‖ + η‖(x, t) (19a)

∂h⊥
∂t
= λ⊥ ∂h‖

∂x

∂h⊥
∂x
+1h⊥ + η⊥(x, t). (19b)

These are the most general equations which respect the symmetries of the problem. Non-
linearities account for the variations of the local crack speed with the local orientation of
the front. Galilean invariance leads to the resultζ‖ + z‖ = 2.

If equation (19) is written directly as a 3d generalization of the KPZ equation,
i.e. imposing the conditions that the crack velocity is contained in the plane defined by
the force and thex-axis is parallel to the line (see figure 5), the termλx does not appear
[46]. In this case, the numerical estimates of Erta¸s and Kardar [30, 31] lead to

ζ‖ ' 0.5 ζ⊥ ' 0.72 z‖ = z⊥ ' 1.5. (20)

Whenλx is equal to 0,h⊥ disappears from equation (19a), which only concernsh‖. In this
case, the in-plane properties are decoupled from the out-of-plane ones (the reverse is not
true), and it is expected that the in-plane properties of a purely three-dimensional front are
the same as the properties of a front constrained to propagate within a plane. This seems
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Figure 5. The definition of the various roughness indices which can be measured on a fracture
surface:ζ⊥ is measured along profiles parallel to thex-axis (perpendicular to the directiony of
crack propagation);ζ‖ is the in-plane roughness, i.e. the roughness of the projection of the crack
front onto the planexy of crack propagation; andζy is the roughness measured on profiles lying
along the directiony of crack propagation. If the crack propagates at a constant velocity, then
one should have:ζy = ζ⊥/z⊥.

to indeed be the case experimentally [47, 48]. To our knowledge, this value ofζ⊥ is the
only theoretical prediction reasonably close to the measured value,∼0.8 (it will be shown
in the next section that the most accurate experimental estimate [35] is 0.78).

Going back from this KPZ regime to the vicinity of the threshold, it can be shown that
parallel and perpendicular perturbations do not propagate at the same rate:

z⊥ = z‖ + 1

ν
(21)

whereν has the definition given in equation (17), since the pinned domain has the same
characteristic extension both parallel and perpendicular to the direction of line propagation.
The argument given by Leshhornet al [45] applies also in 3d, when considering the
projection of the moving front onto the plane of propagation:

β = ν(z‖,c − ζ‖,c). (22)

For a local line tension, it can be shown also that

ν = 1

2− ζ‖,c . (23)

In this case, isotropy further leads to

ζ‖,c = ζ⊥,c + 1

2
(24)

which means that in the small-velocity regime—i.e. close to threshold, or at length scales
smaller thanξc—the in-plane roughness indexζ‖,c should be close to unity ifζ⊥,c is close
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to 1/2. It will be shown in the following that in fact both exponents are close to 1/2 in
experiments [34, 35, 47].

In fact, neither equation (23) nor equation (24) hold if elastic long-range forces are
taken into account. In particular, equation (24) becomes

ν = 1

1− ζ‖,c . (25)

This should actually be the case for cracks, as first noticed by Gao and Rice [49] and by
Schmittbuhl and co-workers [50]. These authors [50] built up a two-dimensional model
using the non-local elastic kernel calculated to first order by Gao and Rice [49]. The
structure of the non-local elastic term is the same as for the triple line in the problem of the
wetting of a dirty surface. The numerical estimates of Schmittbuhl and co-workers [50] are
very close to the renormalization group (RG) result obtained by Erta¸s and Kardar in this
case:

ζc ' 0.35 zc ' 1.5. (26)

By studying a model rather close to the one of Schmittbuhlet al [50], Thomas and
Paczuski [51] have obtained very different results, in agreement with a mean-field approach,
leading to

ζc = 1/2 β = 1 ν = 2 zc = 1. (27)

The discrepancy between the two series of results does not seem to depend upon the nature
of the forces, and already exists when short-range forces are taken into account. In fact,
while Schmittbuhlet al consider forces higher thanFc and only allow—in a quasi-static
way—the less pinned site to advance by a random length, Thomas and Paczuski consider
the system below threshold, and allow local avalanches to occur, the size of which diverges
whenF is closer toFc. This is reminiscent of the two models proposed by Sneppen [52],
with short-range forces however. In both cases, the interfacez(x, t) is defined on a discrete
chainx = 1, . . . , N ; also defined are a string of random Gaussian uncorrelated local pinning
forcesη(x) constant over time (quenched disorder). As already noticed, the quenched or
thermalized nature of the disorder is of particular importance when the crack velocity tends
to zero. In the first model (model A in [52]), the site feeling the smallest pinning force is
allowed to move by one unit under the condition that the local slope remains smaller than
unity, i.e. |z(x) + 1− z(x ± 1)| 6 1. The roughness exponent is thenζ = 1.00± 0.01,
while β is also lying at around unity:β = 0.95± 0.05.

In the second model considered by Sneppen [52] (model B), the constraint on the slopes
acts after the least pinned site is moved. To fulfil this constraint, the neighbouring sites
are compelled to advance as well, thus creating a local avalanche. This model leads to
self-affine fronts characterized by a roughnessζ = 0.63± 0.02, and aβ-exponent equal to
0.9± 0.1. The scaling theory of model B was proposed by Maslov and Paczuski [53].

On the other hand, on imposing a condition on the local curvature rather than on the
slope, model A was studied numerically by Roux and Hansen [54]. In this case, the front
is shown to be self-similar, with a roughness index greater than 1:ζ = 1.2.

Hence it seems clear that the method used for approaching the threshold is crucial for
the determination of the behaviour of the moving line. Whether one type of model or the
other is more appropriate for fracture is still not clear at present.

Very recently, Ramanathan, Erta¸s and Fisher considered a three-dimensional quasi-
static non-local model [55]. Like in equation (19a), whenλx = 0, in-plane properties are
decoupled from out-of-plane ones, which seems to be the case experimentally [47, 48]. But,
in complete disagreement with experiments, there is only one out-of-plane regime predicted,
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Table 1. Comparison of the measured critical exponents with the predictions of the various 3d
and 2d models of lines moving in random environments.

Depinning transition Moving phase

3d local model [30] ζ⊥ 0.5 0.72
ζ‖ 1.2 0.5
z⊥ 2.3 1.5
z‖ 1.3 1.5
β 1
ν 1/3

3d non-local model [55] 0.5 (mode III) 0.5 (mode III)
ζ⊥ Logarithmic (mode I) Logarithmic (mode I)
ζ‖ 1/3 (mode III) Logarithmic (mode III)
z⊥
z‖ 7/9 (mode III)
β 7/9 (mode III)
ν 3/2 (mode III)

2d local models ζ 1 [52] model A, 0.63 [52] model B, [53], 1.2 [54] 1/2 [44]
z 3/2 [44]
β 1 [52] model A, 0.9 [52] model B
ν 2.8 [52] model B, [53]

2d non-local models ζ 1/3 [31], 0.35 [49], 0.5 [51] Logarithmic
z 7/9 [31]
β 7/9 [31], 1 [51]
ν 3/2 [31], 2 [51]

Experiments ζ⊥ 0.5 [34–36] 0.78 [35], [1–19]
ζ‖ 0.54 [47], 0.55 [48]
z⊥ 2 [58] 1.2 [16]
z‖ 1.5 [58]
β 2 [58]
ν 2 [58]

independently of the crack velocity. Furthermore,ζ⊥ should be equal to 0.5 in the case of
a mode III external loading, while the fracture surface should be only logarithmically rough
under mode I loading. The residual stresses are found to be able to increase this roughness,
but it appears likely to the authors that elastic wave propagation effects may be needed
to explain the experimental observations. As will be seen in the following, the orders of
magnitude of the measured crack speeds fail to suggest the relevance of inertial effects
in the experiments. Even in the case of very discontinuous crack propagation modes, for
which the measured velocity is in fact an average over too-large time-scales, one is indeed
in the quasi-static regime. Ramanathanet al [55] also note that these models only consider
uncorrelated noise, whereas the microstructural disorder might be strongly correlated at short
length scales. This would only displace the problem, since the new question would concern
universality of internal stress correlations in materials. On the other hand, non-linearities
which are shown to be irrelevant to first order might be important. More generally, the
high local slopes observed on the fracture surfaces of metallic materials might lead one to
question the relevance of perturbative theories.

Finally, table 1 summarizes the results obtained using the models quoted, compared to
experimental measurements.
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Act IV—experiments and simulations: two regimes of fracture—from ‘quasi-static’
to ‘rapid’?

It is very tempting to use these theoretical models in order to give a unified interpretation of
the various series of experiments at different length scales, or at different crack velocities.
On the other hand, this theoretical framework suggests that on very general grounds, for
each regime (close to threshold and beyond threshold), a fracture surface is characterized
by threea priori independent roughness indices (see figure 5). As will be shown in this
section, most of these exponents have now been measured experimentally.
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Figure 6. (Courtesy of J Schmittbuhl [16].)σ(1)/1ζ is plotted on a log–log diagram as a
function of (y − y0)/1

1/α for 100 profiles perpendicular to the direction of crack propagation.
y − y0 is the distance from the profile considered to the initial notch,1 is a distance along the
x-axis (perpendicular to the directiony of crack propagation), andσ = 〈(z(r +1)− z(r))2〉1/2r .

Scene 1. Roughness of the front along the direction of crack propagation

Schmittbuhl and co-workers [57] have characterized the out-of-plane scaling properties of
a granite fracture surface (see figure 1(e)) along the direction of crack propagation (see
figure 4). For that purpose, they have examined one hundred profiles perpendicular to that
direction, lying at various distancesy from the initial straight notch. They have shown that
the evolution of the self-affine correlation lengthξ⊥ (the upper limit of the ‘0.8’ regime)
from a ‘microscopic’ size typical of the initial straight notch was following a power law:

ξ⊥ ∝ yα α ' 1

1.2
. (28)

The rescaling of all one hundred profiles over one master curve is shown in figure 6.
It would be tempting to interpret the exponentα as 1/z⊥ within the framework of

the models quoted in the previous section (Act III), and to compare the experimental
result with the prediction of the Erta¸s–Kardar modelz‖ = z⊥ ' 1.5 (see equation (20)).
However, this comparison would be relevant if the experiments of Schmittbuhlet al had
been performed at a constant velocity during crack propagation. In that case,y would have
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Figure 7. A fracture front marked with indian ink in the 8090 aluminium alloy, observed with
a SEM (backscattered-electron contrast). The white arrow on the left indicates the direction of
crack propagation (parallel to the length of the very elongated metallurgical grains). Inset: a
fracture front marked with indian ink, observed with a mixed signal (secondary+ backscattered
electrons) exhibiting characteristic dimples (indicated by white arrows).

indeed corresponded to time. Since fracture was obtained by throwing a knife into the initial
notch, this is very unlikely.

Scene 2. In-plane roughness of arrested crack fronts

In-plane exponents—ζ‖,c and ζ‖—have received less attention from experimentalists. In
fact, these exponents are more difficult to reach. In the ‘moving phase’, in particular,ζ‖
should be measuredduring propagation. It seems that such an experiment would be possible
only by registering the crack front evolution with a camera in a transparent material. In
contrast,ζ‖,c, characterizing the ‘pinned’ phase, could be measured from the observation of
marked arrested cracks in two different metallic alloys [47, 36].

To do this, fracture was arrested during propagation either in tension (on a 8090
aluminium–lithium alloy), or in fatigue (for the Ti3Al-based Superα2 [56]), and indian
ink was injected into the cracks under a moderate vacuum. The samples were subsequently
carefully dried, and fracture was completed. It could be checked in each case that the limit
of indian-ink-covered metal did indeed correspond to arrested crack fronts (see figure 7).
In both cases, these fronts could be observed over three decades of length scales. In the
case of the Superα2, it was found that

ζ‖,c ' 0.54 (29)
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Figure 8. A fracture front (perpendicular to the direction of crack propagation) in the Superα2.
The fracture surface is plated with NiPd. The deposit appears in very light grey above the alloy
where the needles ofα2-phase are visible.

while a result closer toζ‖,c ' 0.6 was found in the case of the 8090 aluminium alloy.
Although the two results are clearly compatible with one another, it was suggested that
the slight difference could be due to the highly anisotropic microstructure of the Al–Li
material. In fact, fracture was propagating in the direction of very elongated metallurgical
grains (length 0.3 mm× width 100µm× thickness 20–50µm; see figure 7, showing that
grain boundaries seem to be efficient pinning sites in that case, although there are some
others at smaller length scales).

Scene 3. Perpendicular exponents: two regimes

To provide a clear experimental answer to the question of whether or not there are two
regimes of fracture (in the vicinity of the depinning transition, and in the moving phase),
crack fronts were analysed at different velocities. In the first experiments, performed on the
Superα2, the crack velocities could not be measured, but various profiles perpendicular to
the direction of crack propagation were analysed along a chevron-notched CT sample (see
figure 2(a)) precracked in fatigue and broken in tension. The microstructure of the Superα2

[56] mainly consists of brittleα2 laths of various sizes (average: 1µm in diameter×10µm
in length, but much finer needles are present also), arranged in colonies of parallel needles
(average width: 50–70µm) with various orientations, immersed in a more ductileβ-phase
(grain size: ∼1 mm). The volume fractions of the two phases are comparable in the
experiments considered.

In the first series of experiments, profiles obtained from fatigue fracture (tension–tension)
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Figure 9. zmax(r) plotted versusr on a log–log plot:�, fracture in tension; also shown is a fit
(dashed line) with a single power law with exponent 0.78.•: with fracture in fatigue; in this
case the fit is the sum of two power laws with exponents 0.5 and 0.78 (solid line;ξc ' 5 µm).
Error bars account for the dispersion of the results for the various micrographs analysed. Note
that the small-length-scales regimes coincide.

were compared to profiles corresponding to tensile fracture on the same sample. Fifteen
micrographs at various magnifications (×50 to×5000) were studied along one profile lying
in the fatigue fracture zone where the average crack velocity was known to be particularly
low (the maximum load was drastically decreased to avoid complete failure of the specimen
before the tensile test was started), and fifteen micrographs corresponding to a tensile fracture
profile close to the edge of the sample were considered as well (see an example in figure 8).
In the latter case, it was possible to fit the evolution ofzmax(r) (equation (5)) with a single
power law with exponent 0.78 over approximately three decades of length scales (figure 9).
In the former one, however, this was impossible, and the existence of a small-length-scales
regime characterized by an exponent close to 0.5 (extending up to a crossover length of
'5 µm) was clearly shown (see figure 9).

In order to investigate better the small-length-scales regime, and to compare tensile
fracture fronts propagated at different velocities, further experiments on the Superα2 were
performed using simultaneously an AFM, in collaboration with F Creuzet and S Hénaux [35],
and a standard SEM. For that purpose, one fracture surface of a CT sample was plated with
NiPd, and subsequently cut, polished, and observed with a SEM at various magnifications
in order to characterize two tensile fracture profiles, one being close to the fatigue fracture
zone, and the other one to the edge of the specimen. On the opposite fracture surface,
ten AFM records were registered along the same profiles. For each SEM or AFM record,
several statistical quantities were computed:zmax (equation (5)),P0 (equation (4)), and the
power spectrumS(q), which were shown to provide comparable results. Furthermore, the
results obtained from the AFM records were shown to be compatible with those obtained
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Figure 10. The region close to the fatigue fracture zone.zmax(r) is plotted versusr on a
log–log plot. Note that the experimental points obtained with the two techniques gently collapse
onto the same curve (the region of overlap of the two techniques extending approximately from
10 nm to 1µm). The fit simply corresponds to the sum of two power laws with exponents 0.5
and 0.78:zmax(r) ∝ (r/ξc)0.5+ (r/ξc)0.78, with ξc = 0.1 µm. The error bars are estimated from
the scattering of experimental results relating to the various micrographs or profiles analysed.
Inset: the region of overlap between the AFM (?) and SEM (�).

from the SEM observations, overlapping over two decades of length scales (approximately
from 10−2 to 1 µm; see figure 10), when the conversion factor of the AFM is chosen to
match the SEM one. For the profile closer to the edge of the specimen, it was shown that
a single power law with exponentζ = 0.78 could fit the dataover five decades of length
scales(from 5 nm to 0.5 mm; see figure 11). In contrast, when considering the profile close
to the fatigue fracture zone, two power laws were needed (see figure 10), with the following
exponents:ζ ' 0.78 at large length scales (0.1 µm–1 mm) andζc ' 0.5 at smaller ones
(5 nm–0.1µm).

Since these two profiles were corresponding to two different stress intensity factorsKI
and crack velocitiesv, these results were in qualitative agreement with the above models:
they have proved the existence of two fracture regimes characterized by significantly
different roughness exponents (0.5 and 0.78), crossing over to one another at a length scale
depending uponKI or v. Nevertheless, measurements of the average crack velocityv during
tensile fracture proved impossible with the available experimental apparatus, and it was
decided to perform more quantitative experiments in fatigue fracture, where a propagating
crack can be more easily slowed down than in pure tension.

Before going on to the description of these more quantitative experiments, let us quote
new large-scale MD simulations [37, 38] concerned with the morphology of fracture surfaces
of amorphous materials, which are in remarkable agreement with experimental results. In
fact, it is found that, as far as profiles perpendicular to the direction of crack propagation are
concerned, there are two self-affine regimes with roughness exponentsζ⊥,c ' 0.5 at small
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Figure 11. The region close to the edge of the specimen.zmax(r) is plotted versusr on a
log–log plot. The best fit of the data is a single power law with exponent 0.78:zmax(r) ∝ r0.78.
Note that the ‘rapid-fracture’ regime extends over approximatelyfive decades of length scales:
5 nm–0.5 mm. Inset: the region of overlap between the AFM (?) and SEM (�).

length scales andζ⊥ ' 0.8 at larger ones, while the ‘large’-length-scales exponent measured
along the direction of crack propagation is close to 0.7, i.e. in good agreement with the
result obtained by Schmittbuhlet al. Samples of 100̊A3 (corresponding approximately to
106 atoms!) are considered in these simulations. The simulated crack velocities however are
much larger than the experimental ones (see below—the experiments on a silicate glass),
and rather close to the Rayleigh wave speed. The crossover lengths are also far smaller.
Nevertheless, not only do the exponents perfectly correspond to the experimentally measured
ones, but the crossover function is very close too: as will be shown below, this crossover is
much more abrupt for amorphous materials than for the Superα2. Finally, although active
at very different length scales, the fracture modes seem to be the same as for the Superα2:
cleavage at small length scales, followed by cavity coalescence with the crack tip. For the
Superα2, cleavage occurs within theα2 needles. These microcracks are grown into cavities
which are blunted at their passage into theβ-phase. Further crack progression occurs by
coalescence of these cavities with the main crack tip. A qualitative comparison of what is
observedin situ with a SEM to what is obtained with MD simulations (see figure 12) is
quite striking!

Scene 4. Perpendicular exponents: depinning of crack fronts

The most recent experiments concern the vicinity of the ‘depinning transition’, studied on
two drastically different materials: the Superα2 and a soda-lime silica glass [58].

Two notched CT specimens of Superα2 were broken in fatigue. Fatigue tests were
carried out using an electro-servohydraulic testing machine, operating under load control.
The tests were performed in air with a constant stress ratioR = σmin/σmax = 0.1 (σmax and
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Figure 12. (a) to (d): results of MD simulations on the fracture of amorphous materials on the
scale of 100Å (courtesy of R Kalia, A Nakano and P Vashishta [38]). (e) and (f ): SEMin situ
observations: crack propagation in tension in small CT samples of Superα2 first precracked in
fatigue.

AFM

ba

σ

σ

Figure 13. (Courtesy of B Nghiem and F Creuzet.) (a) The experimental four-points bending
system. (b) A sketch of the indented plate of glass. The zone in which the AFM observations
are performed is indicated by an arrow.

σmin are respectively the minimum and the maximum stresses), at a frequencyf = 30 Hz.
The evolution of the crack lengtha with time was measured using the potential-drop method
[61]. The fracture surfaces were observed for four different velocities spanning from 10−9

to 10−6 m s−1, using both an AFM and a SEM.
Fracture surfaces of soda-lime silica glass have been prepared by controlling the crack

propagation with a four-points bending system (see figure 13). After the initial propagation,
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which allows one to relax all residual stresses, the plate was properly loaded in order to
obtain the required average crack velocity. This velocity was measured by imaging the
crack tip with an AFM at different times [18]. The humidity rate was measured, and kept
between 37 and 41%. The controlled crack propagation is maintained over a distance of
about 30µm, so that fracture surfaces can be easily probed with an AFM. The crack
velocities range from 2× 10−9 to 10−7 m s−1. Ten AFM height profiles of length 1.5µm
were registered perpendicularly to the direction of crack propagation (⊥) on three samples,
and along this direction (‖) for four other specimens, in the mirror zone (see figures 1(a)
and 1(b)). As will be shown in the following, no significant anisotropy could be detected.

Figure 14. (See reference [58].)zmax(r)/
√
ξc is plotted againstr/ξc for the two materials

separately. Note that in these reduced units, the plots corresponding to the various velocities
collapse onto the same curve. Although the crossover regions are quite different for the
two materials, the asymptotic regimes are well described by power laws with exponents 0.5
(r/ξc � 1) and 0.78 (r/ξc � 1).

In order to determine the roughness exponentsζc, ζ , and the crossover lengthξc of
the profiles analysed, the quantityzmax(r) was computed for each record, and averaged for
each profile. For the Superα2, over the whole range of observations,zmax(r) is very well
fitted by the sum of two power laws:zmax(r) = A((r/ξc)0.5 + (r/ξc)0.78). The small- and
large-length-scales roughness indices—0.5 and 0.78 respectively—are chosen to fit with the
results of previous experiments [35]. As already mentioned when considering the results
of MD simulations, the crossover between the two regimes is much sharper in the case
of glass, and, in this case, the crossover lengthξc was determined as the intersection of
the two asymptotic power-law regimes with exponents 0.5 and 0.78. Once the crossover
lengths have been determined in each case, it is possible to plotzmax as a function ofr/ξc.
In figure 14, curves showingzmax(r)/

√
ξc for each material are plotted as functions ofr/ξc,

and shown to collapse onto the same master curve. In both cases, the asymptotic regimes
are well described by power laws with exponents 0.5 at small length scales (r/ξc � 1), and
0.78 at large length scales (r/ξc � 1). In other words, one can write

zmax(r) ' r0.5f

(
r

ξc

)
(30)
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with f (x → 0) ∼ 1 andf (x � 1) ∼ x0.28, showing that the amplitude of the small-length-
scales contribution is independent ofξc, and hence of crack velocity.

These results, obtained for materials as different as an intermetallic alloy and a glass,
confirm previous observations [35, 34], where the short- and large-length-scales regimes
were interpreted, respectively, as a ‘quasi-static’ and a ‘rapid’ regime.

Figure 15. (See [58].) The evolution of the crossover lengthξc with the crack velocity for the
Superα2 (◦) and for soda-lime silica glass (4/�: perpendicular (⊥)/parallel (‖) to the direction of
crack propagation).ξc is plotted versusv on a log–log plot, exhibiting a power-law dependence
with an exponentφ ' 0.91.

As can be seen in figure 15,ξc decreases with the crack velocityv in both cases,
although the measured values ofξc are approximately 1000 times larger in the case of
the Superα2 than in the case of glass. In that respect, these experimental results can be
interpreted as being a consequence of the small-scale heterogeneity of glass [59, 60]. They
are compatible with a power-law decreasev−φ in both cases, with an estimated value ofφ

close to unity. Note that the values ofξc measured for glass for the higher velocities might
be overestimated: in this case the precision is very bad, sinceξc is of the order of some
nanometres, i.e. close to the resolution limit of the AFM.

In figure 16, bothξc and v for Superα2 are plotted against the stress intensity factor
1K = (σmax−σmin)√a. The fatigue crack growth in this regime is widely known as being
intermittent [62, 63]. In this regime, the crack tip opens and closes many times before it can
extend over a small distance. This process is repeated several times and causes incremental
crack advance. The number of cycles required to get the crack to advance decreases as1K

increases, and the crack motion is more and more continuous, microstructural obstacles
being efficient at smaller length scales. At a given time, the forceF exerted on the fracture
front is proportional to1K, while the threshold forceFc is proportional to1KTh (defined
in figure 16). As the frequency of oscillation of these forces is far more rapid than the crack
propagation, only the average force needs to be considered, which legitimates the analogy
with the above-quoted models. In the case of glass,F is proportional to the stress intensity
factorK, while Fc is proportional to the thresholdKTh. Preliminary results indicate that,
in the sub-critical regime, the crack velocity is not uniform, and intermittency is likely to
occur. Thus, in both cases, the pinning/depinning scenario is qualitatively satisfactory.
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Figure 16. (See [58].) Superα2: the fatigue crack velocity (�) as well as the crossover length
ξc (◦) are plotted against the stress intensity factor1K. The threshold value1KTh is indicated.

Figure 17. (See [58].) Superα2 (◦): the fatigue crack velocity (white symbols) is plotted versus
1K−1KTh on a log–log plot, as well as the crossover lengthξc (black symbols). Glass (4/�:
perpendicular (⊥)/parallel (‖) to the direction of crack propagation): the crack velocity is plotted
as a function ofK −KTh (white symbols), as well asξc (black symbols).

Figure 17 shows the evolution of the crack velocityv as a function of1K − 1KTh
for the Superα2 and as a function ofK − KTh for glass. In the case of the Superα2,
experimental measurements reveal a power-law increase without any change between the
so-called ‘threshold’ and Paris regimes [63] (figure 16). In contrast, when static fracture
occurs, a clear deviation from the power law can be observed for high values of1K−1KTh.
A fit of these data givesβ ' 2. This value is compatible with the measurements on glass
(figure 17).

In figure 17, ξc is plotted, also for both materials. A power-law decrease can be
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observed, and the fit of the data relating to the metal givesν ' 2.06, compatible with the
results on glass.

One can note thatφ = ν/β ' 1. On the other hand, it is expected that the exponent
n characterizing the range of interactions (n = 2 for local models—see reference [27] and
equation (23)—andn = 1 for models taking into account the non-locality of elasticity—see
reference [32] and equation (25)) is related to the exponentsν andζ‖ through the relation

n = ζ‖ + 1

ν
. (31)

If ζ‖ is taken equal to 0.54 [47] (equation (29)), this leads to a value ofn ' 1.03, very close
to unity, as expected for elastic interactions [32, 50, 51] (equation (25)). The 2d model
of Thomas and Paczuski [51] (see table 1) gives results rather close to the experimental
estimates ofζ‖ andν: ζ = 0.5 andν = 2, but the value ofβ is quite different, since they
find β = 1.

Using equations (21) and (22), one can in principle deduce from the estimates ofβ, ν,
and ζ‖ the values of the dynamic exponents:z‖ ' 1.5 andz⊥ ' 2. Hence, perturbations
on the crack front are diffusive perpendicularly to the direction of crack propagation, while
they are slightly hyper-diffusive along this direction.

For ductile materials such as Superα2, the plastic zone sizeRplast should be a relevant
length scale as well. Although the same regimes are observed over the whole range of
1Ks, it can be noted thatRplast exceedsξc for the two experiments corresponding to
higher velocities, i.e. within the Paris regime. In the case of glass, the plastic zone size
has been estimated also [18] to be of the order of some nanometres, i.e. of the order of
magnitude ofξc.

The question of plasticity is in fact very striking on more general grounds, since no
experiment, to our knowledge, indicates a crossover to a new regime when the plastic
zone size is exceeded. One possible answer is that the exponent characterizing the fracture
surface within that zone could be very close toζc or ζ , so no new regime can be properly
characterized. In fact, Roux and Hansen and co-workers have suggested [64, 65] that for
perfect plasticity, the fracture surface should be a ‘minimum-energy surface’ [66–68], i.e. the
surface for which the energyglobally spent during the fracture process is a minimum. This
is obviously a quasi-static assumption, since fracture is an irreversible process, for which
the system cannot wander to the lower-energy state. Recent estimates of the roughness
indices of minimum-energy surfaces led to [68–70]

ζM.E.S. ' 0.45 (32)

which is close enough to the measured value ofζc to be confused with it. One possible
scenario that one could think of is the following. At low enough1K, in fatigue experiments,
the plastic zone sizeRplast is much smaller thanξc, and the roughness index isζM.E.S. up to
distances of the order ofRplast , andζc for length scales intermediate betweenRplast andξc,
although no crossover can be detected experimentally, the two exponents being too close
to one another and/orRplast being too close to the resolution limit of the AFM. Outside the
plastic zone, perfect elasticity can in fact be assumed, and the pinning/depinning scenario
with non-local elasticity described above is likely to occur. Hence, for low enough1K,
ξc should decrease with the crack velocity. In contrast, when1K is increased,Rplast
increases also, and there should exist a value1K? above whichRplast becomes greater
than ξc. In this case, the ‘pinning/depinning’ scenario is no longer valid, and what is
observed is the plastic regime characterized byζM.E.S., up toRplast , while at larger length
scales, the ‘0.8’ regime can be expected again. This assumption, however, requires that
the observed crossover between the small- and large-length-scales regimes takes place at
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Rplast for 1K > 1K?. Since classical theories predict an increase ofRplast with 1K, one
should observe an increase of the crossover length with1K when1K > 1K?. As shown
previously, this does not seem to be the case experimentally, but one cannot exclude the
possibility that this occurs for higher values of1K andv.

Act V—pinning/depinning: that is the question

Twelve years of quantitative analysis have shown that the morphology of fracture surfaces
is rich enough to help us to achieve more of an understanding of crack propagation in
heterogeneous materials. Their scaling properties have now been extensively studied, and
shown to extend sometimes over five decades of length scales, which makes them among
the best-characterized scaling phenomena in natural sciences.

It has been argued that the ‘large-length-scales/high-velocities’ roughness index is
universal. Non-significant differences in the measured exponents may arise from differences
in length scales. It is indeed clear that the correlation lengthξ , for example, is strongly
material dependent: the same scaling properties are observed for metallic materials up to
length scales of the order of 1 mm, while they hardly extend beyond∼100 nm for glass,
both in the mirror and the mist zones [71]. In fact,ξ seems to be of the order of the largest
heterogeneity in the material considered. On the other hand, it appears quite clearly now
that there is another self-affine regime at smaller length scales/smaller velocities. When
observations are possible over only two decades of length scales, a power law with an
effective exponent, intermediate between the two values 0.5 and 0.8—depending on the
proportions of the two regimes which are accessible—can perfectly fit the data.

The very existence of these two regimes is close to the predictions of models of lines
moving in random environments, the relevance of which to fracture has been suggested in
[33]. Obviously, these models are not yet suitable for fracture, but some of their conclusions
help in a synthetic reading of complex experimental results.

Among the weaknesses of the existing approaches—usually not meant to describe crack
propagation—Schmittbuhl and co-workers [50] have noticed the importance of non-locality
of elasticity [49]. An attempt to take these into account in three dimensions has been
performed in [55]. Although it fails to predict the experimental observations, this model is
particularly interesting, and could be modified without taking into account inertial effects.

On the other hand, the quasi-static assumption might be wrong, if inertial effects are
indeed relevant on a very local scale. Experiments and models concerned with truly dynamic
fracture [72–76] have not been quoted here—except MD simulations—although they might
be relevant to an understanding of the observations. As most experiments in dynamic
fracture are performed on glass or on polymeric materials, in the domain where they are
in fact homogeneous, we have long considered that the two situations (quasi-static and
dynamic) could be separated—until more was understood, like, say, turbulence as compared
to laminar flow in porous media! This might be a completely wrong picture, however [77],
and more should be known soon.

For amorphous materials, MD simulations are particularly promising. They might be
very efficient as regards the understanding of fracture, allowing for the analysis of the
entire stress distribution in the material during crack propagation. They are particularly
well adapted to dynamic fracture, since the crack velocities are close to the Rayleigh speed.
It might not be possible to reach low velocities with these simulations, because they are still
computer time consuming. Strikingly, however, the morphologies of the fracture surfaces
generated by this technique are very close to those observed experimentally in the ‘quasi-
static’ regime.
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The scenario predicted by the line-moving models is very close to what is observed
for real materials. Some other phenomena might arise when the stress intensity factor is
such that plasticity cannot be neglected any longer, and this will be analysed in further
experiments on more ductile aluminium alloys.

Finally, more macroscopic calculations could use as a basic element the results of these
‘microscopic’ models in order to predict the mechanical behaviour of complex materials.

As a conclusion, a great deal of work has been achieved in the field of ‘fracture seen
by statistical physicists’, and yet a lot still remains to be done for a clear image to appear.
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